Time to Read: 1 m 55s
Arc welding has a number of distinct styles, each with its own approach to binding multiple metals together via a metal electrode. Below, we’ve showcased four of the most popular welding methods, with their unique advantages and disadvantages.
Metal Inert Gas (MIG) Welding
Invented in the 1940s for welding non-ferrous materials, MIG used to stand for “metal inert gas”, because the welding gun would disperse an inert gas to prevent atmosphere contamination. Today, the process has incorporated carbon dioxide instead of inert gas, so it is officially known as gas metal arc welding (or GMAW). Many people still call it MIG, however. MIG welders can use globular, short-circuiting, spray, and pulse-spray methods to create an electric arc between their electrode wire and multiple metal joints. It’s the most common industrial welding process today, though it is not recommended for outdoor use (due to unpredictable air).
Tungsten Inert Gas (TIG) Welding
Tungsten inert gas (TIG) welding is a more difficult process to master, but it gives the user more power and control over the final weld. Instead of wielding a metal alloy electrode, this method uses a non-consumable tungsten version with an inert shielding gas. Depending on the weld being performed, a filler metal may also be used. TIG requires serious coordination with both hands, so it’s not recommended for beginner welders.
Flux-Cored Arc Welding (FCAW)
Next, flux-cored arc welding (FCAW) harnesses a continuously fed electrode tube with a cleaning agent (called a flux) and a constant power supply. Typically, the flux provides enough protection from atmospheric contamination, but sometimes an additional shielding gas is used. The main advantage over other arc welding methods is the elimination of stick electrodes, which makes welding faster and more portable.
Shielded Metal Arc Welding (SMAW, or Stick)
Finally, shielded metal arc welding (SMAW, or stick) is an extremely popular method for construction and repairs. Coated with a flux, an electrode rod is melted to form an electric arc between multiple metal pieces. As the electrode is used, the flux changes into shielding vapor and slag, both of which serve as protection against contaminants. Stick welding requires less equipment than many other welding methods, and is excellent for stainless steel and iron.